

ORIGINAL RESEARCH PAPER

Determination of Aerosol Particle Size Distribution using Electrical Differential Mobility Analyzer (DMA)

Fatemeh Fasih-Ramandi¹, Asghar Sadigzadeh², Mohammad-Javad Jafari³*, Soheila Khodakarim⁴

¹ Student Research Committee, (Department of Occupational Health), Shahid Beheshti University of Medical Sciences, Tehran, Iran

² Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran, Iran
³ Department of Occupational Health, School of health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran

⁴ Department of Epidemiology, School of Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Received: 2019-01-05

Accepted: 2020-07-19

ABSTRACT

Introduction: Determining the size distribution of the particles for assessing their effects on human health and their control mechanisms is very effective. One of the most important equipment used in determining particle size distribution is the DMA. In this study, in addition to the design and construction of a DMA, the size distribution measurement of aerosol particles was carried out.

Material and Methods: In this experimental-laboratory study, according to the theoretical principles, the geometric dimensions and operating conditions of the DMA were determined by Fortran programs. The design of the technical drawing of the DMA was done using the Salidworks-2017 software. The DMA designing was performed by studying the size distribution of 12 ranges of DOP particles in 15 voltages.

Results: The results of applying different voltages to the DMA showed that one range of particles size had the highest number of particles in the output of the DMA at each voltage. As the number of particles with the size of 0.26-0.3 μ m at 3500 volts and those larger than 2 μ m at 9000 volts is the highest at the output of the DMA.

Conclusion: DMA systems are a robust tool in determining the particle size distribution. As by knowing the required voltage to separate a specific size of the particles, the DMA will be able to specify the spectrum of unknown particles.

Keywords: Particle Size Distribution, Differential Mobility Analyzer, Aerosol

1. INTRODUCTION

Determination of aerosol size distribution is critical for understanding the impact of aerosol particles on human health as well as assessing their control mechanisms. The differential mobility analyzers (DMAs) have served a critical role in aerosol science, allowing separation of particles based on their electrical mobility. Since their initial development, DMAs have been extensively used for size classification and measurement of aerosols. A typical setup of a DMA consists of two concentric electrodes between which an electric potential is applied. In this way, one of the electrodes is negatively charged and the other is positively charged, resulting in ceating an electric field between them. An aerosol flow containing charged particles is introduced adjacent to one of these electrodes. A particle-free (dry and clean) sheath air flow initially separates the aerosol flow from the opposite electrode. The electric field causes charged particles to move towards the opposite electrode across the space between the electrodes at distinct axial locations, according to their electrical mobility, which are related to their size. Therefore, particles with a narrow range of electrical mobility exit through a small slit located at the bottom of the

Copyright © 2021 The Authors. Published by Tehran University of Medical Sciences.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license (https:// creativecommons.org/licenses/by-nc/4.0/). Non-commercial uses of the work are permitted, provided the original work is properly cited.

^{*} Corresponding Author Email: jafari1952@yahoo.com

collector electrode. These particles are transferred to a particle counter to determine their number concentration.

2. MATERIAL AND METHODS

This laboratory experimental study was carried out in 2017-18. The theoretical principles governing the development of the DMA device were extracted from texts and articles in order to determine the geometric dimensions and operating conditions of the DMA. Numerical calculations were carried out using FORTRAN programming software and the Excel 2016 program. The technical drawings of the constituent parts of the DMA were carried out using SOLIDWORKS-2017 software. The DMA set up was constructed based on the montage scheme of the constructing drawings.

The laboratory instrumentation including the high voltage DC power supply (HV35P model) with the ability to provide controlled electric potential difference in the range of 1 to 10 kV with 0.5 interval, Particle counter device (Grimm) with the ability to determine the numerical concentration of particles in 12 ranges of particle size from 0.26 μ m to larger than 2 μ m, TOPAS-ATM 225 particle generator with the ability to produce particles in the range of 0.15-3 μ m of dioctyl phthalate (DOP), and dry and clean air supply system including pump, compressor, filter and its holder were used, also a diluent was applied to dilute the flow of aerosols. The flow-meters and multi-meter were used to measure the flow rate and voltage. After calibration

of these instruments, their layout was determined. Figure 1 shows laboratory layout and equipment used in the study.

Experiments were carried out to determine the particle size distribution and the efficiency of the proposed DMA at the air velocity of 11.3 cm/s and necessary various electrical voltages. All tests were carried out under ambient air temperature and normal environmental conditions. Statistical analysis was carried out using SPSS-22 and Excell-2016 soft wares.

3. RESULTS AND DISCUSSION

The results revealed that at the applied voltages higher than 2KV, particles with a specific range of size were differentiated and detected at the output. By applying different voltages to the DMA, at each voltage, one range of particles' size had the highest number of particles in the output of the DMA. In other words, at a given voltage, this system allowed a range of particles to be exited exclusively while acted as a filter for the other particles. This led the polydisperse input particles to be separated like monodispersed particles. The single distribution of a specific domain of input particles depends on the velocity of the airflow and the systems' voltage. At the constant velocity of 11.3 cm/s, the particles of 0.26-0.3 micrometer had reached their highest number at the output of the device at a voltage of 3.5 KV and larger than 2 microns particles at a voltage of 9 KV(Figure 2). Hence, it seems that in lower voltages, smaller particles, and at higher

Fig. 1. Laboratory layout and equipment used in the study

Fasih-Ramandi F. et al. / Determination of Aerosol Particle Size Distribution using...

Fig. 2. Maximum output particles of DMA devices per voltage and particle size

Table 1. Two-way and multi-way analysis of variance in the study of the effect of voltage and particle size on the efficiency of DMA device

	Efficiency (%)	
V ariable	P-value	R ²
Particle size (µm)	0.038	0.014
Voltage (v)	< 0.001	0.676
Particle size * Voltage	<0.001	0.996

voltages, larger particles accounted for a greater portion of the output particle size distribution. As, up to 7 kilovolts, the dominant output particles, were under micron, and at voltages higher than 7 kilovolts, the dominant output particles were particles larger than micron. The maximum performance of the DMA system at the velocity 11.3 cm/s was 81.2%, for the monodisperse particles of 0.3-0.35 micrometer. The results of two-way and multi-way analysis of variance showed a significant relationship between electrical voltage and DMA efficiency (Table 1). It was also shown that the effect of voltage on the DMA performance in different particles size is different. The dispersion of the results of repeated experiments also showed that this device has a good repeatability.

4. CONCLUSIONS

DMA systems are powerful tools for determining the particle size distribution. In these devices, the electrical mobility of the particles is used to classify and determine the distribution of their size. By knowing the peak voltage for a particular particle size, we can determine the size distribution of the unknown particles by this device. The DMA devices can also be used as a calibration tool and singledistributive particle generator in order to test filters and assessment of the particles classification in different workplaces and environments. However, continuous researches on the improvement and evolution of these equipment seem to be required.

5. ACKNOWLEDGMENT

This study is related to the project NO. 1396/56483 From Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

We also appreciate the "Student Research Committee" and "Research & Technology Chancellor" in Shahid Beheshti University of Medical Sciences for their financial support of this study.

تعیین توزیع اندازه ذرات آئروسل با استفاده از دستگاه تحلیل گر دیفرانسیلی تحرک الکتریکی (DMA)

فاطمه فصيح رامندى'، اصغر صديق زاده'، محمد جواد جعفري"*، سهيلا خداكريم ً

^۱ کمیته پژوهشی دانشجویان، گروه مهندسی بهداشت حرفه ای، دانشکده بهداشت و ایمنی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

^۲ پژوهشگاه علوم و فنون هسته ای، سازمان انرژی اتمی ایران، تهران، ایران ^۳گروه مهندسی بهداشت حرفه ای، دانشکده بهداشت و ایمنی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران ^۴ گروه اپیدمیولوژی، دانشکده بهداشت و ایمنی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

تاريخ دريافت: ١٣٩٧/١٠/١٥، تاريخ پذيرش:٢٩/ ٢٠/ ١٣٩٩

🔳 چکیدہ

مقدمه: تعیین توزیع اندازه ذرات در شناسایی خواص فیزیکی و شیمیایی آن ها، ارزیابی اثرات شان بر سلامتی انسان و روش های کنترل آن ها، بسیار موثر می باشد. یکی از مهمترین تجهیزاتی مورد استفاده در تعیین توزیع اندازه ذرات، دستگاه تحلیل گر دیفرانسیلی تحرک الکتریکی ذرات (DMA) می باشد. در این مطالعه ضمن طراحی و ساخت دستگاه DMA، توزیع اندازه ذرات آئروسل توسط آن انجام شد.

روش کار: در این مطالعه تجربی-آزمایشگاهی، بر اساس تئوری های حاکم بر رفتار آئروسل ها در میدان های الکتریکی، ابعاد هندسی و شرایط عملیاتی دستگاه DMA با استفاده از نرم افزار FORTRAN تعیین شد. طراحی نقشه فنی قطعات تشکیل دهنده دستگاه DMA با استفاده از نرم افزار SOLIDWORKS-2017 انجام شد. عملکرد دستگاه DMA طراحی شده، توسط مطالعه توزیع اندازه ۱۲ دامنه ذرات DOP تولید شده توسط مولد ذرات در ۱۵ ولتاژ انجام گرفت.

یافته ها: نتایج حاصل از اعمال ولتاژهای مختلف به دستگاه DMA، نشان داد که در هر ولتاژ یک دامنه از اندازه ذرات بیشترین تعداد ذرات را در خروجی دستگاه به خود اختصاص می دهند. بطوریکه ذرات ۰/۳ –۰/۲۶ میکرومتر در ۳۵۰۰ ولت و ذرات بزرگ تر از ۲ میکرون در ۹۰۰۰ ولت دارای بیشترین تعداد در خروجی دستگاه DMA بودند.

نتیجه گیری: سیستم های DMA، یک ابزار قدرتمند در تعیین توزیع اندازه ذرات در دامنه نانومتر تا میکرومتر می باشند. بطوریکه با دانستن ولتاژ لازم برای جداسازی یک اندازه خاص از ذرات، می توان طیف اندازه ذرات مجهول را به وسیله دستگاه DMA مشخص نمود.

🗮 كلمات كليدى: توزيع اندازه ذرات، تحليل گر ديفرانسيلى تحرك الكتريكى ذرات، آئروسل

* پست الكترونيكي نويسنده مسئول مكاتبه: jafari1952@yahoo.com

🔳 مقدمه

امروزه معضل آلودگی هوا، بدون هیچ تردیدی بعنوان یکی از اصلی ترین چالش های زندگی شهرنشینی شناخته می شود و همه ساله خسارات فراوان جانی و مالی را به شهروندان و ساکنان شهر های بزرگ و پرجمعیت جهان تحمیل می کند. مروری بر آمار سازمان بهداشت جهانی (WHO) می تواند شاهدی بر این ادعا باشد. بر اساس گزارش های این سازمان آلودگی هوا در محیط های بسته و فضاهای باز شهری سالانه جان ۶/۵ میلیون نفر از ساکنان کره زمین را می گیرد. متأسفانه بخش عمده این مرگ و میرها در کشور های در حال توسعه اتفاق می افتد(۱). بر پایه ارزیابی صورت گرفته توسط آژانس بين المللى تحقيقات سرطان (IARC) نيز مشخص گرديده است که آلودگی هوا بویژه هوای حاوی ذرات آئروسل بروز سرطان به ویژه سرطان ریه را افزایش می دهد (۲, ۳). منابع آلاینده هوای شهرها بیشمار و غالبا ناشی از فعالیت های انسانی هستند(۴–۶). آلودگی هوا اثرات نامطلوبی از جمله آسیب مجاری تنفسی، کاهش ظرفیت تنفس، نارسایی مغزی-کلیوی، پیری زودرس(۲-۹)، کاهش ظرفیت حمل اکسیژن خون، گرمای جهانی و صدمات غیرقابل جبران دیگری که به حیات حیوانات و گیاهان وارد می سازد را در پی دارد(۱۰–۱۲). مطالعات مختلفی اثر آلودگی هوا را بر عملكرد شناختي مغز، بيماري آلزايمر، پاركينسون، آسم، سرطان ریه و سکته قلبی مورد تایید قرار داده اند(۱۳-۱۶). بطوریکه بر اساس آمارها ۱۹ درصد از مرگ و میر ناشی از بیماری های قلبی و عروقی و ۲۱ درصد از مرگ و میر ناشی از سکته مغزی به آلودگی هوا مرتبط می باشد(۱۷).

قسمت عمده آلودگی هوا را ذرات آئروسل تشکیل می دهند(۱۲). سالانه میلیون ها کارگر در جهان و هزاران کارگر در ایران در مواجهه با ذرات آئروسل محیط کار قرار دارند(۱۸). شناخت خواص فیزیکی و شیمیایی ذرات، به منظور ارزیابی صحیح اثرات آن ها بر سلامتی انسان، کیفیت هوا، اقلیم جهانی و در نهایت اتخاذ استراتژی های کنترل آلودگی هوا، امری حیاتی می باشد(۱۹). چرا که تاثیر ذرات بر دستگاه تنفسی انسان به اندازه آن ها بستگی

دارد. اندازه گیری کل ذرات نمی تواند بیانگر پیش بینی بیماری های شغلی افراد در معرض مواجهه باشد. بنابراین اندازه گیری ذرات بر اساس قطر آن ها مؤلفه ای مهم در پیش بینی و مقایسه با حدود استاندارد است، زیرا اکثر بیماری های شغلی-تنفسی مرتبط با ذراتی هستند که در مناطق معینی از دستگاه تنفسی ته نشین می شوند(۸۱). از طرفی نیز انتخاب مکانیسم مناسب برای کنترل ذرات مزروسل، قویا به اندازه ذرات بستگی دارد، چرا که اندازه ذره مهمترین ویژگی است که بر رفتار آن تاثیر می گذارد. بنابراین با دانستن اندازه ذرات آئروسل می توان رفتار ذرات در جریان هوا را تعیین و نوع ابزار مناسب برای کنترل آن ها را مشخص نمود(۲۰, ۲۱). از این رو ضرورت اندازه گیری توزیع اندازه ذرات، به منظور درک بهتر دینامیک ذرات و روش های کنترل آلودگی ناشی از ذرات آئروسل، احساس می گردد(۲۲).

اندازه گیری ذرات با استفاده از خواص فیزیکی ذرات از جمله خواص اپتیکی، اینرسی، الکتریکی و غیره انجام می شود(۲۳). از جمله این روش ها می توان به تحلیل گرهای دیفرانسیلی تحرک الکتریکی ذرات¹، دستگاه اندازه گیری دیفرانسیلی تحرک ذرات^۲، دستگاه اسکنر اندازه تحرک ذرات^۳، شمارنده های اپتیکی ذرات⁴ و سنجشگر های آئرودینامیکی ذرات^۵ اشاره نمود(۱۹).

در میان روش های مختلفی که به منظور تجزیه و تحلیل ذرات آئروسل توسعه یافته اند، تحلیل گر دیفرانسیلی تحرک الکتریکی ذرات بعنوان رایج ترین ابزار در طبقه بندی و اندازه گیری توزیع اندازه گیری تحرک گسترده ای دارد(۱۹). تاریخچه اندازه گیری تحرک الکتریکی آئروسل ها به نیمه اول قرن بیستم میلادی بر می گردد(۲۲). Hewitt اولین پژوهشگری بود که الکترواستاتیکی، دستگاهی برای اندازه گیری ذرات با بار الکتریکی ساخت (۲۴). تحقیقات بر روی این دستگاه ادامه

¹ Differential Mobility Analyzer

² Differential Mobility Particle Sizer

³ Scanning Mobility Particle Sizer

⁴ Optical Particle Counters

⁵ Aerodynamic Particle Sizers

یافت تا اینکه در سال ۱۹۷۵ اولین نمونه موفق تجاری « تحلیل گر تحرک الکتریکی ذرات آئروسل» توسط Liu و Pui ساخته شد(۲۵).

دستگاه DMA شامل یک استوانه و میله هم مرکز می باشد که در فضای بین آن ها پتانسیل الکتریکی اعمال می گردد. میدان الکتریکی در داخل استوانه باعث باردار شدن ذرات و حرکت آن ها به سمت میله مرکزی می گردد. در حضور میدان الکتریکی ثابت، مسیر حرکت ذرات باردار در فضای بین میله مرکزی و استوانه، در موقعیت های متمایزی از طول استوانه بر اساس تحرک الکتریکی ، که در واقع تابع اندازه ذرات است، انجام می گیرد(۲۲). از مزایای اصلی سیستم های DMA می توان به توانایی بالای آن ها در اندازه گیری و طبقه بندی دامنه وسیعی از ذرات با قطر ۳ نانومتر تا بیشتر از ۲ میکرومتر، زمان پاسخ سریع، دقت بالای اندازه گیری، حداقل از دست رفتن نمونه و هزینه کم برای ساخت آن ها اشاره نمود(۱۹, ۲۲). با توجه به اهمیت تعیین توزیع اندازه ذرات و مزیت های ذکر شده در مورد دستگاه های DMA و نیز نظر به اینکه تاکنون گام موثری در کشور در جهت ساخت و توسعه این نوع تجهیزات برداشته نشده است، این مطالعه ضمن طراحی و ساخت دستگاه DMA، به تعیین توزیع اندازه آئروسل به کمک دستگاه DMA، یرداخته است.

🔳 روش کار

این مطالعه تجربی- آزمایشگاهی با همکاری سازمان انرژی اتمی کشور و دانشگاه علوم پزشکی شهید بهشتی در سال ۹۷-۱۳۹۶ طی ۵ مرحله، انجام گرفت. نخست نظریه ها و پارامترهای موثر بر ساخت دستگاه از متون و مقالات استخراج گردید و نسبت به طراحی دستگاه از متون و اقدام شد. به منظور تعیین ابعاد هندسی و شرایط عملیاتی دستگاه DMA، محاسبات عددی به کمک نرم افزار برنامه نویسی به زبان FORTRAN و برنامه 2016-Excel انجام گرفت. بطوریکه ابتدا کلیه روابط حاکم بر عملکرد دستگاه به زبان FORTRAN برنامه نویسی شدند(۲۶)، پس از اعتبارسنجی این برنامه (بصورت محاسبات دستی

و تكرار آن در برنامه Excel-2016)، محاسبات انجام گرفت و نتایج استخراج گردید. در مرحله بعد نقشه های فنی قطعات تشکیل دهنده دستگاه به کمک نرم افزار SOLIDWORKS-2017 (۲۷) ترسیم شد. سیس مواد خام اولیه تهیه و نسبت به ساخت قطعات اقدام گردید. مونتاژ قطعات بر اساس طرح مونتاژی استخراج شده از این نرم افزار انجام گرفت. در مرحله بعد چیدمان آزمایشگاهی تجهیزات انجام شد. در این مطالعه برای تأمین ولتاژ لازم، از منبع تغذيه DC ولتاژ بالا (مدل HV35P) با قابليت تامین اختلاف پتانسیل کنترل شده در محدوده ۱ تا ۱۰ کیلوولت استفاده شد. برای شمارش ذرات قبل و پس از دستگاه از شمارنده ذرات (مدل ۷/۳۰۹ ساخت شرکت Grimm) با قابلیت تعیین غلظت عددی ذرات در ۱۲ دامنه از اندازه ذرات در حدود ۰/۲۶ میکرومتر تا بزرگ تر از ۲ میکرون استفاده شد. برای تولید ذرات و تزریق آن به دستگاه DMA از دستگاه مولد ذرات مدل-TOPAS ATM 225، که قادر به تولید ذرات در محدوده اندازه ۳–۱۵/۰ میکرون از جنس دی اکتیل فتالات (DOP) بود، استفاده شد. برای تأمین هوای مناسب از سیستم تامین هوای خشک و تمیز، پمپ، کمپرسور، فیلتر و نگهدارنده آن استفاده شد. از یک رقیق ساز برای رقیق سازی جریان آئروسل ها استفاده شد. از دبی سنج و مولتی متر برای اندازه گیری نرخ جریان هوا و اختلاف پتانسیل اعمالی به دستگاه استفاده شد. پس از کالیبره کردن تجهیزات، جانمایی آن ها مشخص گردید.

دستگاه DMA از یک استوانه توخالی متصل به زمین و یک میله فلزی هم محور، که تحت اختلاف پتانسیل کنترل شده قرار می گیرد، تشکیل شده است. به این ترتیب میدان الکتریکی در فضای بین استوانه و میله مرکزی برقرار می گردد. با ورود جریان هوای حاوی ذرات آئروسل، ذرات باردار گشته (Q) و به همراه جریان هوای تمیز (Q) از فضای حلقوی داخل استوانه به سمت پایین حرکت می کنند. در بخش انتهایی میله مرکزی، شکافی تعبیه شده که این شکاف فقط اجازه عبور جریان خاصی از هوا که دارای ذرات با یک دامنه محدود از

شکل ۱. چیدمان آزمایشگاهی و تجهیزات مورد استفاده در سیستم مورد مطالعه

جدول۱. روابط نظری حاکم بر طراحی و ساخت دستگاه DMA (۲۲)

$E = \frac{\Delta W}{R_L \ln\left(\frac{D_t}{D_w}\right)}$	شدت میدان الکتریکی (E)	(رابطه ۱)
$Z_{p} = \frac{\left(Q_{s} + Q_{a}\right)\ln\left(R_{2} / R_{1}\right)}{2\pi L V}$	تحرک الکتریکی ذرات باردار (Z _p)	(رابطه ۲)
$d_p = \frac{neC_c}{3\pi\mu Z_p}$	قطر ذرات (dp) بر اساس قانون استوکس (Re<•۰٫۱)	(رابطه ۳)
$C_c = 1 + K_n [1.257 + 0.40 \exp(-1.10 / K_n)]$	ضريب تصحيح لغزش كانينگهام (C _c)	(رابطه ۴)

راهنمایی: E: شدت میدان الکتریکی،۵% تفاضل جبری ولتاژ بین الکترودها، _Bس و t_t و Bt، قطر الکترود داخلی و بیرونی، R_L: میانگین فضای بین الکترودها ، R_t و R^s: شعاع الکترودها، L طول موثر الکترود مرکزی، V: ولتاژ اعمالی، n: تعداد بار الکتریکی، 4: گرانروی گاز حامل ذره (هوا) و Kn، عدد نادسن

> تحرک الکتریکی می باشند، را می دهد. ذرات با تحرک الکتریکی بزرگ تر قبل از اینکه به شکاف برسند به سمت میله مرکزی منحرف می شوند و ذرات با تحرک الکتریکی کوچک تر شکاف را رد کرده و به سمت بیرون کشیده می شوند. جریان خارج شده از شکاف مرکزی از طریق لوله ای به دستگاه شمارنده ذرات هدایت می شود و به این ترتیب غلظت عددی ذرات، مشخص می گردد.

موقعیت یا محل جمع آوری ذرات بر روی میله مرکزی بستگی به تحرک الکتریکی ذرات (Z_p)، نرخ جریان سیال و شکل هندسی DMA دارد. تحرک الکتریکی ذرات جمع آوری شده نیز تابع ابعاد DMA، ولتاژ اعمالی و نرخ جریان سیال می باشد(۱۹, ۲۲). جدول شماره ۱ روابط حاکم بر طراحی و ساخت دستگاه DMA و شکل شماره ۱ چیدمان آزمایشگاهی و تجهیزات مورد استفاده در

شکل ۲. توزیع اندازه ذرات ورودی به دستگاه DMA

سیستم مورد مطالعه را نشان می دهد.

بر اساس محاسبات صورت گرفته، طول دستگاه تحلیل گر دیفرانسیلی تحرک الکتریکی ذرات (DMA) ساخته شده، ۴۳۸/۴۴ میلیمتر، قطر خارجی ۷۶ میلیمتر، طول ناحیه طبقه بندی ۱۶۰ میلیمتر، قطر استوانه ۵۵ میلیمتر و از جنس فولاد ضد زنگ و قطر میله مرکزی آن ۲۰ میلیمتر و از جنس مس بود. نرخ جریان آئروسل ها و هوای ورودی به دستگاه، به ترتیب ۱/۲ و ۱۲ لیتر بر دقیقه با سرعت جریان هوای ایزوکینتیک ۱۱/۳۲ سانتیمتر بر ثانیه بود.

با تنظیم اختلاف پتانسیل منبع تغذیه DC در محدوده ۱۰–۱ کیلوولت و به فواصل نیم کیلوولت، اثر اختلاف پتانسیل بین دو الکترود (شدت میدان) بر عملکرد دستگاه مورد آزمایش قرار گرفت. نتایج به کمک نرم افزار SPSS-v22 و برنامه Excell-2016 مورد تجزیه و تحلیل آماری قرار گرفت. از آزمون کولموگروف اسمیرنف در بررسی نرمال بودن توزیع داده ها و از آزمون آنالیز واریانس دوطرفه و چندطرفه در بررسی اثر ولتاژ و اندازه ذرات و بررسی اثر توام آن ها بر کارایی دستگاه DMA استفاده شد.

🔳 يافته ها

شکل شماره ۲ توزیع اندازه ذرات در ورودی و شکل شماره ۳ توزیع اندازه ذرات خروجی از دستگاه DMA

را در ولتاژهای مختلف نشان می دهند. همانطور که در شکل شماره ۳ ملاحظه می گردد، اعمال اختلاف پتانسیل به الکترود مرکزی دستگاه DMA منجر به تغییراتی در تعداد ذرات خروجی از دستگاه DMA نسبت به تعداد ذرات ورودی (شکل شماره ۲) گردیده است. هر دامنه از اندازه ذرات، در محدوده خاصی از ولتاژ الکتریکی، به حداکثر تعداد خود در خروجی دستگاه رسیده است، در حالی که در سایر ولتاژها با کاهش چشمگیری همراه بوده است. این نتایج بطور خلاصه در قالب یک نمودار سه بعدی، در شکل شماره ۴ نشان داده شده است. با توجه به شکل شماره ۴، حداکثر تعداد ذرات خارج شده از دستگاه DMA، ذراتی با اندازه ۳/۰-۰/۲ میکرومتر می باشند که در ولتاژ ۳۵۰۰ ولت از دستگاه خارج شده اند. پس از آن ذرات ۰/۳۵–۰/۳ میکرومتر در ولتاژ ۴۰۰۰ ولت به حداکثر تعداد خود در خروجی دستگاه رسیده اند. و در نهایت ذرات بزرگ تر از ۲ میکرون در ولتاژ ۹۰۰۰ ولت، با حداکثر تعداد از دستگاه خارج شده اند.

کمترین و بیشترین مقادیر کارایی دستگاه DMA، (درصدی از ذرات ورودی که از دستگاه خارج شده اند)، به ترتیب ۵/۶ و ۸۱/۲ درصد بود. شکل شماره ۵ حداکثر کارایی دستگاه DMA را برای هر دامنه از اندازه ذرات به ازای ولتاژ اعمالی نشان می دهد. همانطور که در شکل شماره ۵ ملاحظه می گردد، بیشترین کارایی متعلق به ذرات ۲۰۳۵- ۲/۰ میکرومتر بوده است که در ولتاژ ۴۰۰۰

فصلنامه بهداشت و ایمنی کار، جلد ۱۱/ شماره ۱/ بهار ۱۴۰۰

شکل ۳. توزیع اندازه ذرات خروجی از دستگاه DMA در ولتاژهای مختلف

شکل ۴. حداکثر تعداد ذرات خارج شده از دستگاه DMA به ازای ولتاژ و اندازه ذرات

فصلنامه بهداشت و ایمنی کار، جلد ۱۱/ شماره ۱/ بهار ۱۴۰۰

شکل ۵. حداکثر کارایی دستگاه DMA به ازای ولتاژ و اندازه ذرات

جدول ۲. نتایج آزمون تحلیل واریانس دوطرفه و چندطرفه در بررسی اثر ولتاژ و اندازه ذرات بر کارایی دستگاه DMA

کارایی (%)		متغير
R۲	P-value	
۰/۰۱۴	۰/۰۳۸	اندازه ذرات (μm)
۰/۶۷۶	< •/•• ١	ولتاژ (٧)
۰/٩٩۶	< •/•• ١	اندازه ذرات * ولتاژ

ولت اتفاق افتاده است.

جدول شماره ۲ نتایج حاصل از آزمون آنالیز واریانس دوطرفه و چندطرفه را در بررسی ارتباط ولتاژ و اندازه ذرات و اثر توام آن ها بر کارایی دستگاه DMA را نشان می دهد. همانطور که در جدول شماره ۲ ملاحظه می گردد، کارایی هم با اندازه ذرات و هم با ولتاژ الکتریکی و هم با اثر توام این دو متغیر، ارتباط آماری معنی داری دارد (P-value<0.05).

🔳 بحث

این مطالعه تجربی-آزمایشگاهی منجر به ساخت نمونه آزمایشگاهی دستگاه تحلیل گر دیفرانسیلی تحرک الکتریکی ذرات شد. دستگاه ساخته شده در مطالعه حاضر از نوع دستگاه DMA با طول ناحیه طبقه بندی کوتاه یا MAT-DMA (۱۶۰ میلیمتر) می باشد که از این نظر مشابه دستگاه DMA1/40 ساخته شده

توسط Winklmayr و همکاران در سال ۱۹۹۱ با طول ستون ۱۱۱ میلیمتر و شعاع های ۲۵ و ۳۳ میلیمتر، بوده است(۲۸). چیدمان آزمایشگاهی و شرایط عملیاتی دستگاه DMA در مطالعه حاضر، شباهت بسیاری به مطالعه Myojo و همکاران در سال ۲۰۰۴ (۲۹) و Mulholland

نتایج حاصل از آزمایش های انجام گرفته در تعیین توزیع اندازه ذرات توسط دستگاه DMA، و تاثیر شدت های مختلف میدان الکتریکی بر تعداد ذرات خروجی از دستگاه نشان داد که در کلیه نمودارها، با افزایش اختلاف پتانسیل اعمالی به دستگاه DMA، میانگین تعداد ذرات خروجی از دستگاه، روندی نزولی داشته است، لیکن در برخی از ولتاژها تعداد ذرات خروجی افزایش و مجددا کاهش یافته است، بطوریکه این روند افزایشی برای هر دامنه از اندازه ذرات در ولتاژ متفاوتی نسبت به سایر دامنه ها اتفاق افتاده

101

ناحیه ای است که در آن تحرک الکتریکی ذرات به حدی رسيده است كه منجر به خروج ذرات آن دامنه از اندازه ذرات، از شکاف مرکزی دستگاه DMA شده است. این در حالی است که تحرک الکتریکی ذرات در سایر دامنه ها کمتر یا بیشتر از محدوده تحرک الکتریکی شکاف مرکزی است. در نتیجه بیشترین سهم ذراتی که از دستگاه خارج می شوند متعلق به ذراتی است که محدوده مناسبی از تحرک الکتریکی را دارا می باشند(۲۲). به عبارت دیگر، با توجه به وابستگی تحرک الکتریکی به اندازه ذرات و نیز وابستگی آن به ولتاژ الکتریکی(۲۲)، می توان چنین بیان کرد که اعمال اختلاف پتانسیل های مختلف بر یک دامنه از اندازه ذرات، مقادیر متفاوتی از تحرک الکتریکی را باعث می شود، بطوریکه فقط معدودی از آن ها در محدوده تحرک الکتریکی شکاف مرکزی قرار می گیرند، لذا در این ناحیه پیک تعداد ذرات با یک اندازه خاص و در یک ولتار اختصاصي، قابل مشاهده است. اين مساله همچنين منجر به رخداد حداکثر کارایی برای آن دامنه از اندازه ذرات می گردد، بطوریکه شکل شماره ۵ نیز موید همین مساله می باشد. در شکل شماره ۵ نشان داده شده است که دستگاه DMA ساخته شده، برای هر دامنه از اندازه ذرات در یک ولتاژ خاصی، حداکثر کارایی را داشته است.

از مقایسه توزیع اندازه ذرات خارج شده از دستگاه DMA با توزیع اندازه ذرات در ورودی می توان به این نکته پی برد که دستگاه DMA ساخته شده، باعث سوق دادن ذرات چند توزیعی به سمت یک روند تک توزیعی شده است. بطوریکه این روند تک توزیعی شدن برای ذرات کوچکتر در ولتاژهای کمتر و برای ذرات بزرگ تر، در ولتاژهای بالاتر اتفاق افتاده است. چرایی این مساله از دو دیدگاه قابل بررسی است. در دیدگاه اول علت این مساله به تعداد بار الکتریکی که ذرات در سطح خود می پذیرند مربوط می شود. بر اساس مبانی نظری، با اعمال میدان الکتریکی به شدت ثابت بر یک دامنه از ذرات، ذرات کوچک تر با پذیرش تعداد بار کمتر به حداکثر ظرفیت خود اشباع می شوند و ذرات با قطر بزرگ تر به تعداد بار بیشتری احتیاج دارند تا به حداکثر

ظرفیت خود برسند(۳۱)، بنابراین با وجود اعمال اختلاف پتانسیل های کمتر، ذرات کوچک تر به حداکثر ظرفیت اشباع خود رسیده، و تحرک الکتریکی کافی برای خروج از شکاف مرکزی دستگاه را پیدا می کنند. ولی ذرات بزرگ تر به اختلاف پتانسیل های بیشتری احتیاج دارند تا تحرك الكتريكي آن ها در محدوده تحرك الكتريكي شکاف مرکزی قرار گیرد. دیدگاه دوم به اندازه ذرات مربوط می شود. با توجه به اینکه وابستگی تحرک الکتریکی به قطر یک وابستگی معکوس برای ذرات در محدوده استوکس می باشد (۳۰)، از این رو، با اعمال اختلاف پتانسیل های کمتر، ذرات کوچک تر، تحرک الکتریکی بیشتری پیدا کرده و خود را به شکاف مرکزی می رسانند، در حالی که ذرات بزرگ تر به دلیل اینکه جرم بیشتری دارند و در نتیجه اینرسی آن ها بیشتر است، برای اینکه بتوان آن ها را از مسیر جریان هوا به سمت خطوط میدان الکتریکی منحرف کرد، به بارالکتریکی بیشتر و در نتیجه به ولتاژهای بالاتری احتیاج است. این موضوع در مطالعات دیگر نیز گزارش شده است، بطوریکه Zhang و همکاران در مطالعه خود در سال ۱۹۹۵ که با هدف توسعه دستگاه DMA شعاعی^۷ انجام دادند، نشان دادند که در ولتاژهای کمتر ذرات کوچک تر و در ولتاژهای بالاتر ذرات درشت تر به پیک خود در خروجی دستگاه رسیده اند. آنها دریافتند که در ولتاژ ۲۵۵۰ ولت ذرات ۱۰۵ نانومتری و در ولتاژ ۶۹۰۰ ولت ذرات ۱۹۸ نانومتری از دستگاه خارج می شوند(۳۲). در مطالعه مشابهی که توسط Myojo و همکاران به منظور تعیین توزيع اندازه ذرات به كمك دستگاه DMA انجام گرفت، مشخص شد که ذرات ۲/۹۴۰، ۱/۰۰۸، ۱/۰۳۴، ۱/۰۹۹، ۱/۱۰۰ و ۱/۲۷۴ میکرون به ترتیب در ولتاژهای ۵۷۰۰، ۶۶۰۰، ۷۰۰۰، ۸۰۰۰ ۷۱۰۰ و ۸۴۰۰ ولت به حداکثر غلظت عددی خود در خروجی دستگاه رسیده بودند(۲۹). کارایی دستگاه DMA ساخته شده که در واقع درصدی از تعداد ذرات ورودی است که از دستگاه DMA خارج شده اند، در محدوده ۸۱/۲-۵/۶ درصد گزارش

⁷ Radial Differential Mobility Analyzer

شده است. در این محدوده مقادیر بالای کارایی مرتبط با ولتاژهایی است که منجر به تک توزیع شدن ذرات ورودی به دستگاه گردیده است و مقادیر پایین کارایی مرتبط با ذراتی است که فیلتر شده و به دلیل تحرک الکتریکی نامناسب، اجازه خروج از شکاف مرکزی دستگاه DMA را نداشته اند. میانگین مقادیر حداکثر کارایی دستگاه برای ذرات مختلف، در سرعت جریان هوای ۱۱/۳ سانتیمتر بر ثانیه، ۷۲ درصد بدست آمد. Zhang و همکاران در مطالعه خود نشان دادند که دستگاه RDMA، کارایی بالای ۸۵ تا ۹۰ درصد در تعیین توزیع اندازه ذرات ۳ تا ۱۰ نانومتر داشته است(۳۲). با وجود اینکه برای برخی از ذرات کارایی دستگاه DMA ساخته شده، بیشتر از ۸۰ درصد بوده است، ولی میانگین کلی کارایی دستگاه در مطالعه حاضر در مقایسه با مطالعه Zhang و همکاران کمتر می باشد، که از دلایل آن می توان، تفاوت در ابعاد هندسی و کمتر بودن نرخ جریان هوا و آئروسل های ورودی به دستگاه RDMA در مقایسه با مطالعه حاضر، نام برد.

در مطالعه حاضر دقت اندازه گیری دستگاه DMA ساخته شده و یا تکرارپذیری نتایج حاصل از سه مرتبه تکرار اندازه گیری ها، به کمک خطوط انحراف معیار ترسیم شده بر روی نمودارها مشخص شد. همانطور که در مطالعه Myojo و همکاران کوچک شدن مقادیر مربوط به انحراف معیار اندازه گیری ها نشان دهنده عملکرد خوب دستگاه DMA بیان شد در مطالعه حاضر نیز مقادیر مربوط به پراکندگی ناشی از تکرار اندازه گیری ها، بسیار کوچک (ضریب تغییرات محاسبه شده در دامنه ۱/۵۶ تا کره نشان دهنده دقت کوچک (ضریب تغییرات محاسبه شده در دامنه ۱/۵۶ تا مناسب و تکرارپذیری نتایج حاصل از دستگاه DMA می باشد و با مطالعه فوق همخوانی دارد(۲۹).

براساس نتایج آزمون تحلیل واریانس دوطرفه، ارتباط بین کارایی و اندازه ذرات، معنی دار بود و بر اساس مقادیر ضریب رگرسیون تعدیل شده تنها ۱/۴ درصد از تغییرات کارایی توسط متغیر اندازه ذرات در مدل قابل پیش بینی است. بنابراین نمی توان متغیر اندازه ذرات را

بعنوان یک متغیر تاثیر گذار بر کارایی دستگاه DMA، در نظر گرفت. همچنین نتایج نشان داد که ارتباط بین کارایی و ولتاژ الکتریکی معنی دار می باشد و بر اساس مقادیر ضریب رگرسیون تعدیل شده، ۶۷/۶ درصد از تغییرات کارایی به کمک متغیر ولتاژ الکتریکی در مدل قابل پیش بینی است. بنابراین ولتاژ الکتریکی تاثیر قابل توجهی بر کارایی دستگاه DMA دارد. بر اساس نتایج آزمون تحليل واريانس چندطرفه در بررسی اثر متقابل ولتاژ الكتريكي و اندازه ذرات بر كارايي دستگاه، ارتباط معنى دار بدست آمد. بدين معنا كه، تاثير ولتاژ بر كارايي دستگاه در اندازه های مختلف ذرات، متفاوت است. بطوریکه بر اساس مقادیر ضریب رگرسیون تعدیل شده ۹۹/۶ درصد از تغییرات کارایی، بطور همزمان توسط دو متغیر ولتاژ و اندازه ذرات در مدل قابل پیش بینی است، که در مقایسه با میزان تاثیر این دو متغیر به تنهایی، افزایش قابل ملاحظه ای داشته است.

مهمترین محدودیت مطالعه حاضر عدم امکان بررسی ذرات کوچکتر از ۲/۲۶ میکرومتر و ذرات نانومتری، با توجه به محدوده کاربردی دستگاه شمارنده ذرات مورد استفاده در مطالعه بوده است که پیشنهاد می شود در مطالعات آتی محدوده تشخیص سیستم در هر دو انتهای طیف گسترش یابد، بطوریکه عملکرد سیستم در تعیین توزیع اندازه ذرات برای ذرات کوچک تر از ۲/۲۶ میکرومتر بصورت جزئی تر و در دامنه های محدودتر و نیز برای ذرات بزرگ تر مورد مطالعه قرار گیرد.

🔳 نتيجه گيرى

دستگاه های DMA، ابزار قدرتمندی در تعیین توزیع اندازه ذرات می باشند. در این دستگاه ها از تحرک الکتریکی ذرات به منظور تعیین توزیع اندازه آن ها استفاده می شود. با دانستن پیک ولتاژ برای یک اندازه خاص از ذرات، می توان توزیع اندازه ذرات مجهول را به وسیله دستگاه DMA تعیین نمود. نتایج حاصل از مطالعه نشان داد این سیستم دارای بالاترین کارایی برای ذرات ۲۵/۰-۳/۰ میکرومتر می باشد. میانگین کارایی ۲۲ این مقاله حاصل طرح مصوب شورای پژوهشی کمیته پژوهشی دانشجویان دانشگاه علوم پزشکی شهید بهشتی به شماره ثبت ۵۶۴۸۳/ص/۵۹۴۶ می باشد. از کمیته پژوهشی دانشجویان و معاونت تحقیقات و فن آوری دانشگاه علوم پزشکی شهید بهشتی برای حمایت مالی از این مطالعه قدردانی می شود.

REFERENCES

- WHO. World Health Organization. Air pollution report 2016
- http://www.hoint/mediacentre/news/releases/2016/airpollution-estimates/en/.
- WHO. Ambient (outdoor) air quality and health 2014. available from: http://www.who.int/mediacentre/ factsheets/fs313/en/. 2014.
- Javadi I, Yazdani Charati J, Mohammadyan M. Evaluation of cooking emitted particulate matter concentration and workers cancer risk assessment in the sari fast-food shops. Journal of Health and Safety at Work. 2019;9(2):121-32.
- Eslamipoor R, Sepehriar A. Firm relocation as a potential solution for environment improvement using a SWOT-AHP hybrid method. Process Safety and Environmental Protection. 2014;92(3):269-76.
- Kalantary S, Golbabaei F, Yazdanirad S, Farhang Dehghan S. Review of literature on occupational exposure to the dusts in Iran over the past 14 years. Journal of Health and Safety at Work. 2019;9(1):1-12.
- Mahmoud M, Mike A, Bijan S. Indoor PM2.5 Concentrations in the Office, Café, and Home. International Journal of Occupational Hygiene. 1970;2(2).
- Shirazi H, Yadghar A. Modeling and analyze dispersion of emission pollutants from air pollution mobile sources based on GIS case study: Tehran city. Tehran Air Pollution Control Projects. 2004.
- Naddafi K, Heydari M, Hasanvand M, M Q. A comparative study of Tehran air quality in 2006 to 2007. InProceedings of the 11th National Congress on Environmental Health. 2008:46-7.
- 9. Abdolhossein P, Hossein K, Mostafa H, Farhad F,

درصد برای دامنه های مورد بررسی، این دستگاه را به ابزاری با کارایی نسبتا خوب و قابل قبول در طبقه بندی و تعیین توزیع اندازه ذرات در ابعاد میکرونی و زیر میکرونی تبدیل کرده است. امید است که این مطالعه بستری جهت انجام تحقیقات دامنه دار، در جهت بهبود، تکامل و توسعه استفاده از این دستگاه ها را در کشور، فراهم آورد.

🔳 تشکر و قدردانی

Hojattollah K. The Effect of Cement Dust on the Lung Function in a Cement Factory, Iran. International Journal of Occupational Hygiene. 1970;2(2).

- Ghiasedin M. Sanitary affects air pollution, air and sound pollution in law Iran. Studies & Schematization Center Publications:Tehran. 2008.
- Gurjar B, Butler T, Lawrence M, J L. Evaluation of emissions and air quality in megacities. Atmospheric Environment. 2008;42(7):1593–606.
- sadighzadeh A. Aerosols in the environment. Journal of Nuclear Energy. 1993;16(3):15-23.
- Kasdagli M-I, Katsouyanni K, Dimakopoulou K, Samoli E. Air pollution and Parkinson's disease: a systematic review and meta-analysis up to 2018. International journal of hygiene and environmental health. 2019;222(3):402-9.
- Peters R, Ee N, Peters J, Booth A, Mudway I, Anstey KJ. Air pollution and dementia: a systematic review. Journal of Alzheimer's Disease. 2019;70(s1):S145-S63.
- Héritier H, Vienneau D, Foraster M, Eze IC, Schaffner E, de Hoogh K, et al. A systematic analysis of mutual effects of transportation noise and air pollution exposure on myocardial infarction mortality: a nationwide cohort study in Switzerland. European heart journal. 2019;40(7):598-603.
- 16. Hoq MN, Alam R, Amin A, editors. Prediction of possible asthma attack from air pollutants: Towards a high density air pollution map for smart cities to improve living. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE); 2019: IEEE.
- Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung S-H, Mortimer K, et al. Air pollution and noncommunicable diseases: A review by the Forum

تعيين توزيع اندازه ذرات آئروسل...

of International Respiratory Societies' Environmental Committee, Part 2: Air pollution and organ systems. Chest. 2019;155(2):417-26.

- Bahrami A. Method of sampling and analysis of pollutants in air. Tehran: Fanavaran; 2015.
- Alfarra M. Insights into atmospheric organic aerosols using an aerosol mass spectrometer: University of Manchester; 2004.
- 20. Theodore L. Air pollution control equipment.Translated by: M.J. Jafari. Tehran: Fadak Esatis; 2014.
- 21. Bahrami A, Zare MJ. Air pollution control technologies volume 1: particles. 1, editor. Tehran: Fanavaran; 2011.
- Intra P, Tippayawong N. An overview of differential mobility analyzers for size classification of nanometersized aerosol particles. Songklanakarin J Sci Technol. 2008;30(2):243-56.
- Falahian N. Studying the behavior of aerosol particles in an electric field (Design and construction of electric densitometer): Al-Zahra University; 1996.
- Hewitt G. The charging of small particles for electrostatic precipitation. Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics. 1957;76(3):300-6.
- 25. Liu BY, Pui DY. On the performance of the electrical aerosol analyzer. Journal of Aerosol Science. 1975; 6 (3-

4): 249-264.

- Chapman SJ. Fortran 90/95 for scientists and engineers: McGraw-Hill, Inc.; 2003.
- https://blogs.solidworks.com/solidworksblog/2018/04/ turn-your-solidworks-hack-into-a-key-feature-withenhancement-requests.html.
- Winklmayr W, Reischl G, Lindner A, Berner A. A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm. Journal of Aerosol Science. 1991;22(3):289-96.
- Myojo T, Ehara K, Koyama H, Okuyama K. Size measurement of polystyrene latex particles larger than 1 micrometer using a long differential mobility analyzer. Aerosol science and technology. 2004;38(12):1178-84.
- Mulholland GW, Donnelly MK, Hagwood CR, Kukuck SR, Hackley VA, Pui DY. Measurement of 100 nm and 60 nm particle standards by differential mobility analysis. Journal of Research of the National Institute of Standards and Technology. 2006;111(4):257-312.
- Zhang Y. Indoor air quality engineering: CRC press Boca Raton, FL; 2005.
- Zhang S-H, Akutsu Y, Russell LM, Flagan RC, Seinfeld JH. Radial differential mobility analyzer. Aerosol Science and Technology. 1995;23(3):357-72.